Open-Ended Tutoring for Programming:
Building Next-Step Hints into an Online
Development Environment

Kelly Rivers and Kenneth R. Koedinger

Carnegie Mellon University

Abstract. In prior work, we developed a new technique that uses solu-
tion spaces to generate hints for student automatically, without any need
for instructor intervention [3]. Now, we have worked with our collabo-
rators on the CloudCoder[2] project to integrate this hint system with
their IDE, making it more accessible to students learning online. In this
demo we will show the hints generated for students in multiple program
states, describe how the algorithm adapts based on the amount of work
a student has accomplished and how far they are from their goal, and
demonstrate how new problems can be added to the system, both with
and without prior sets of student data.

Keywords: automatic hint generation, solution space, programming tutors,
open-ended tutors

1 Introduction

In any intelligent tutoring system, a student who is working on an individual
problem needs to be able to access feedback and hints in order to progress inde-
pendently in their work. In programming, feedback is usually accessible through
automatic assessment [1], but hints are harder to generate when students are
working on problems in an open-ended environment. Our recent research has
shown that it is possible to use large corpuses of student data to generate hints
automatically through the use of path construction algorithms [3]. We build on
that research in the system presented here, with additional focus on how hint
messages are formatted to align with the student’s original intentions.

The system we describe is integrated into CloudCoder, an online IDE that
lets teachers share problems across classes and assign work to their students
online [2]. CloudCoder also provides students with compiler and test case feed-
back. We have extended this IDE by integrating a hint button which connects
the CloudCoder server to our hint generation server, thereby allowing remote
handling of hint messages (see Figure 1).

The hints generated by our system attempt to guide the student to the closest
possible solution by indicating where they need to make a change, the current
code that needs to be changed, and the new code that will take its place. In this



isEvenPositivelnt - << Back Log out

Given an arbitrary value x, return True if it is an integer, and it is positive, and it is even
(all 3 must be True), or False otherwise. Do not crash if the value is not an integer. So,

Reset
isEvenPositivelnt("yikes!") retums False (rather than crashing), and i
isEvenPositivelnt(123456) retuns True.

Hint please!

Submit!

isEvenPositiveInt(x):
type(x) int:
false

In line 3 replace ‘false’ with 'False’ in the return statement

Fig. 1. An example of a hint produced for a student who has made a small error while
programming, shown in CloudCoder.

demo we show a variety of hint messages that can be generated and explain how
they are constructed within the system.

We will also demonstrate a few methods that can be used to create the
solution space used to generate hints for the problems. These methods include
gathering process data or final solutions from students, and also having the
teacher generate multiple solutions ahead of time to pre-populate the solution
space. We will give the members of the workshop the opportunity to generate
solutions that can become part of a solution space for a new problem, and then
test the resulting space to see how well it performs for a new incorrect solution.

Acknowledgements. This work was supported in part by Graduate Training
Grant awarded to Carnegie Mellon University by the Department of Education
(# R305B090023).

References

1. Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of
programming: A review. Journal on Educational Resources in Computing (JERIC),
5(3), 4.

2. Hovemeyer, D., Hertz, M., Denny, P., Spacco, J., Papancea, A., Stamper, J., &
Rivers, K. (2013, March). CloudCoder: building a community for creating, assigning,
evaluating and sharing programming exercises. In Proceeding of the 44th ACM
technical symposium on Computer science education (pp. 742-742). ACM.

3. Rivers, K., & Koedinger, K. R. (2013, June). Automatic generation of program-
ming feedback: A data-driven approach. In The First Workshop on Al-supported
Education for Computer Science (AIEDCS 2013) (p. 50).



