CMU 15-112: Fundamentals of Programming and Computer Science
Class Notes: Recursion (Getting Started)


  1. Popular Recursion
  2. General Recursive Form
  3. Recursive Math
  4. Recursive Debugging
  5. Basic Examples
    1. rangeSum
    2. listSum
    3. power
    4. interleave
  6. Divide-And-Conquer Examples
    1. rangeSum
    2. listSum
  7. Multiple Base/Recursive Case Examples
    1. power
    2. interleave
  8. Examples Comparing Iteration and Recursion
    1. factorial
    2. reverse
    3. gcd
  9. Iteration vs Recursion Summary
  10. More Examples

  1. Popular Recursion  
    1. "Recursion": See "Recursion".
    2. Google search: Recursion
    3. Recursion comic: http://xkcd.com/244/
    4. Droste Effect: See the Wikipedia page and this Google image search
    5. Fractals: See the Wikipedia page and this Google image search and this infinitely-zooming video
    6. The Chicken and Egg Problem (mutual recursion)
    7. Sourdough Recipe: First, start with some sourdough, then...
    8. Books: Godel, Escher, Bach; Metamagical Themas;
    9. Wikipedia page on Recursion: See here.

  2. General Recursive Form  
    def recursiveFunction():
        if (this is the base case):
            # no recursion allowed here!
            do something non-recursive
        else:
            # this is the recursive case!
            do something recursive

  3. Recursive Math  
    # A few example recursive functions.
    # Can you figure out what each one does, in general?
    
    import math
    
    def f1(x):
        if (x == 0): return 0
        else: return 1 + f1(x-1)
    
    def f2(x):
        if (x == 0): return 40
        else: return 1 + f2(x-1)
    
    def f3(x):
        if (x == 0): return 0
        else: return 2 + f3(x-1)
    
    def f4(x):
        if (x == 0): return 40
        else: return 2 + f4(x-1)
    
    def f5(x):
        if (x == 0): return 0
        else: return x + f5(x-1) # why does this work?
    
    def f6(x):
        if (x == 0): return 0
        else: return 2*x-1 + f6(x-1) # why does this work?
    
    def f7(x):
        if (x == 0): return 1
        else: return 2*f7(x-1)
    
    def f8(x):
        if (x < 2): return 0
        else: return 1 + f8(x//2)
    
    def f9(x):
        if (x < 2): return 1
        else: return f9(x-1) + f9(x-2)
    
    def f10(x):
        if (x == 0): return 1
        else: return x*f10(x-1)
    
    def f11(x, y):
        if (y < 0): return -f11(x, -y)
        elif (y == 0): return 0
        else: return x + f11(x, y-1)
    
    def f12(x,y):
        if ((x < 0) and (y < 0)): return f12(-x,-y)
        elif ((x == 0) or (y == 0)): return 0
        else: return x+y-1 + f12(x-1, y-1)  # why does this work?
    
    def f13(L):
        assert(type(L) == list)
        if (len(L) < 2): return [ ]
        else: return f13(L[2:]) + [L[1]]
    
    def go():
        while True:
            n = input("Enter function # (1-13, or 0 to quit): ")
            if (n == "0"): break
            elif (n == "11"): print("f11(5, 7) ==", f11(5, 7))
            elif (n == "12"): print("f12(5, 7) ==", f12(5, 7))
            elif (n == "13"): print("f13(list(range(20))) ==", f13(list(range(20))))
            else:
                f = globals()["f"+n]
                print("f"+n+": ", [f(x) for x in range(10)])
            print()
    
    go()

  4. Basic Examples  
    1. rangeSum
      def rangeSum(lo, hi):
          if (lo > hi):
              return 0
          else:
              return lo + rangeSum(lo+1, hi)
      
      print(rangeSum(10,15)) # 75

    2. listSum
      def listSum(L):
          if (len(L) == 0):
              return 0
          else:
              return L[0] + listSum(L[1:])
      
      print(listSum([2,3,5,7,11])) # 28

    3. power
      def power(base, expt):
          # assume expt is non-negative integer
          if (expt == 0):
              return 1
          else:
              return base * power(base, expt-1)
      
      print(power(2,5)) # 32

    4. interleave
      def interleave(list1, list2):
          # assume list1 and list2 are same-length lists
          if (list1 == []):
              return []
          else:
              return [list1[0] , list2[0]] + interleave(list1[1:], list2[1:])
      
      print(interleave([1,2,3],[4,5,6]))  # [1,4,2,5,3,6]

  5. Divide-And-Conquer Examples  
    1. rangeSum
      def rangeSum(lo, hi):
          if (lo == hi):
              return lo
          else:
              mid = (lo + hi)//2
              return rangeSum(lo, mid) + rangeSum(mid+1, hi)
      
      print(rangeSum(10,15)) # 75

    2. listSum
      def listSum(L):
          if (len(L) == 0):
              return 0
          elif (len(L) == 1):
              return L[0]
          else:
              mid = len(L)//2
              return listSum(L[:mid]) + listSum(L[mid:])
      
      print(listSum([2,3,5,7,11])) # 28

  6. Multiple Base/Recursive Case Examples  
    1. power
      def power(base, expt):
          # This version allows for negative exponents
          # It still assumes that expt is an integer, however.
          if (expt == 0):
              return 1
          elif (expt < 0):
              return 1.0 / power(base, abs(expt))
          else:
              return base * power(base, expt-1)
      
      print(power(2,5)) # 32
      print(power(2,-5)) # 1/32 = 0.03125

    2. interleave
      def interleave(list1, list2):
          # This version allows for different-length lists
          if (len(list1) == 0):
              return list2
          elif (len(list2) == 0):
              return list1
          else:
              return [list1[0] , list2[0]] + interleave(list1[1:], list2[1:])
      
      print(interleave([1,2],[3,4,5,6])) # [1,3,2,4,5,6]

  7. Recursive Debugging
  8. # Debugging recursive code can get tricky! We can make it easier by keeping track
    # of the recursion depth using a parameter, then adjusting the print based on that depth.
    # We'll make the parameter optional (giving it a starting value) so that it
    # doesn't need to be included when the function is called.
    
    def rangeSum(lo, hi, depth=0):
        print("   " * depth + "rangeSum(" + str(lo) + ", " + str(hi) + ")")
        if (lo > hi):
            result = 0
        else:
            result = lo + rangeSum(lo + 1, hi, depth + 1)
        print("   " * depth + "-->", result)
        return result
    
    print(rangeSum(10, 15))

  9. Examples Comparing Iteration and Recursion  
    Function
    Iterative Solution
    Recursive Solution
    Recursive Solution with Stack Trace
    factorial
    def factorial(n):
        factorial = 1
        for i in range(2,n+1):
            factorial *= i
        return factorial
    
    print(factorial(5))
    def factorial(n):
        if (n < 2):
            return 1
        else:
            return n*factorial(n-1)
    
    print(factorial(5))
    def factorial(n, depth=0):
        print("   "*depth, "factorial(",n,"):")
        if (n < 2):
            result = 1
        else:
            result = n*factorial(n-1,depth+1)
        print("   "*depth, "-->", result)
        return result
    
    print(factorial(5))
    reverse
    def reverse(s):
        reverse = ""
        for ch in s:
            reverse = ch + reverse
        return reverse
    
    print(reverse("abcd"))
    def reverse(s):
        if (len(s) < 2):
            return s
        else:
            mid = len(s)//2
            return (reverse(s[mid:]) +
                    reverse(s[:mid]))
    
    print(reverse("abcd"))
    def reverse(s, depth=0):
        print("   "*depth, "reverse(",s,"):")
        if (len(s) < 2):
            result = s
        else:
            mid = len(s)//2
            result = (reverse(s[mid:], depth+1) +
                      reverse(s[:mid], depth+1))
        print("   "*depth, "-->", result)
        return result
    
    print(reverse("abcd"))
    gcd
    def gcd(x,y):
        while (y > 0):
            (x, y) = (y, x%y)
        return x
    
    print(gcd(500, 420)) # 20
    def gcd(x,y):
        if (y == 0):
            return x
        else:
            return gcd(y,x%y)
    
    print(gcd(500, 420)) # 20
    def gcd(x,y,depth=0):
        print("   "*depth, "gcd(",x, ",", y, "):")
        if (y == 0):
            result = x
        else:
            result = gcd(y, x%y, depth+1)
        print("   "*depth, "-->", result)
        return result
    
    print(gcd(500, 420)) # 20

  10. Iteration vs Recursion Summary  
    Recursion
    Iteration
    Elegance
    Performance
    Debuggability

    Note: These are general guidelines. For example, it is possible to use recursion with high performance, and it is certainly possible to use (or abuse) iteration with very low performance.

    Conclusion (for now): Use iteration when practicable. Use recursion when required (for "naturally recursive problems").

  11. More Examples
    See these notes for more examples of how recursion can be used.